ISSN:0976-0172

Chevula Rekha etal, IBio sci Tech, Vol 10(4),2022, 01-06 Journal of Bioscience And Technology

WWW.jbstontine.com

A Study of Cloud/IX Operating System for the ARM-based Data
Center Server Platform

Chevula Rekha!, Vanapamula Veerabrahmachari’ , Arekatla Madhava Reddy?’,
Dr. Padigala Suresh*
Assistant Professor'?, Associate Professor®
rekhavenkat16@gmail.com?, vveerabrahmachari@gmail.com?
amreddy2008@gmail.com?,padigalas36 @gmail.com*

Department of CSE, A.M. Reddy Memorial College of Engineering and Technology,
Petlurivaripalem, Narasaraopet, Andhra Pradesh

Article Info

Received: 29-11-2022 Revised: 18-11-2022 Accepted: 28-11-2022

Abstract

A transition from costly hardware to a large number of inexpensive servers has become a dominant trend in data center design architecture,
creating new challenges for data center architects and necessitating the adoption of fresh approaches. In this paper, we explore alternative
approaches to designing distributed systems in the spirit of the Plan9 operating system. We begin with an overview of application and
research initiatives such as the porting of Plan9 to the IBM Blue Gene/L supercomputer, the usage of Plan9 in data centers and clouds,
and the develop t of distributed embedded systems. Then, we present Cloud/IX, an OS for ARM-based server systems that, like Plan9,
is based on the Plan9 architecture and runs on top of a variant of Plan 9 called 9front. We also detail the infrastructure and findings of
an experimental evaluation of Cloud/IX on a real-world, multi-server farm in a data center.

Keywords:

operating systems; distributed systems; Plan 9 operating system model; server platforms; data centers; Cloud/IX
operating system.

Introduction

Modern data centers look very different than they did just 10 years ago and it's not just that 10 years is perhaps
longer than any computer lifespan. The emergence of Big Data, Cloud Computing, 4G Mobile data, and other
modern trends drastically changed the spectrum of industry's tasks and problems. Recent advances in science such
as genetic sequencing and nuclear research made sure we can safely assume that data production and massively
parallel processing (MPP) continues its exponential growth. Integration with private and public clouds, server
consolidation and full virtualization, more extensive skill set of data center personnel are all consequences of this
explosive growth. This poses new tasks and demands the use of different strategies for data center (DC) architects.
An increase in power consumption in DCs constitutes the major problem to the DC market development.
Energyrelated costs account for about half of the total server maintenance costs of data center ownership, while
most of these goes to the provision of power supply and cooling to the servers. In general, we can consider two
approaches to solution of the energy efficiency problem, namely: an efficient use of existing facilities and
resources (e.g., use of virtualization and cloud computing, allowing to increase utilization rate of available
resources and to decrease the equipment needs), and new architectural solutions to the data center designs (e.g.,
Cisco Unified Computing System).

The energy efficiency problem of the server design is approached at different levels from a processor core,
through the single server, and up to the server

farm. At processor level, the ARM energy-efficient processor architecture [1] is nowadays considered a solution
of choice to the development of server hardware. According to IDC forecasts, by 2015 the ARM architecture can

Page | 1


http://www.jbstonline.com/
mailto:rekhavenkat16@gmail.com
mailto:vveerabrahmachari@gmail.com2
mailto:amreddy2008@gmail.com
mailto:padigalas36@gmail.com

ISSN:0976-0172

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06 -
Journal of Bioscience And Technology

WWW.jbstontine.com

win more than 15% market share of server hardware. In September 2010, the British company ARM Holdings
first entered this market with Cortex-A15 processor based on ARMv7-architecture.Their version of the ARM
Cortex A15 MPCore, designed for CPU clocks of up to 2.5 GHz, demonstrated the five times performance
improvement with respect to the processors used in smart phones while maintaining the same energy consumption
levels. Recently, ARM has released the first 64-bit processors - CortexA57 and A53, and a new 64-bit architecture
- ARMvS, which is nearly ready for mass production. To leverage the advantages that new energy-efficient
processor architecture offers, the server architects request new software solutions both at the operating systems
level and at level of the server virtualization layers. An example of developments in this area is the x86 binary
code compiler for the ARM architecture designed by the Elbrus Technology [2]. It allows for migration of
software written for x86-based servers to the ARM processor architecture. Software emulator will allow
unchanged run of applications compiled for the x86-architecture on the ARM server. Recently, ARM have
published package additions to the Linux kernel, which provide support to the instruction set of the ARMv8-core.
These additions are now implemented in a number of flavors of Linux, including Ubuntu. Thus, the design and
development of an operating system for servers based on ARM processor architecture continues to be a task of
great importance, a quality solution to which is expected to allow creation the efficient distributed server farms in
terms of performance, power consumption, and scalability. In this paper, we describe our solution to the
distributed systems design problems that we approach with the development of a new operating system called
Cloud/IX. The design of our own operating system follows the Plan9 model and is implemented on top of one of
Plan 9 derivatives called 9front - a free software distributed operating system [3]. We present the general
characteristics of Plan 9-based approach to the design of distributed systems, and introduce the Cloud/IX operating
system for data center servers based on ARM processors. Section 2 provides quick discussion of distributed
systems application spectrum in its relation to the computer architecture problems. Section 3 presents key features
of the Plan 9, accompanied with the examples of Plan 9 use in diverse distributed computing application areas.
These include project of porting Plan 9 to the supercomputer platform (for MPP scientific computing
applications), project of using Plan 9 in data center server platform (for distributed and cloud systems
applications), and a research project of adding real-time scheduling into Plan 9 for distributed embedded systems
(DES) applications. Section 4 describes our Cloud/IX operating system for the ARM-based server platforms. The
experimental testbed and results of experimental tests of the Cloud/IX are discussed in Section 5. Finally, some
conclusions and future work are shown in Section 6.

Distributed Applications and its Impact on Computer Architecture Design

There is a huge class of tasks that can be well parallelized, which makes it much easier to run them on multi-node
computer architectures — this includes mostly computational tasks, such as fluid dynamics and optical modeling
as well as generic data processing, i.e. genetic sequencing and text processing, including web search and indexing.
Web search and indexing is, in fact, one of the most, if not the most widespread use of computing resources today.

Some estimates put the percentage of worldwide CPU cycles spent on it as high as 35%, which sounds believable
when you count for a fact that a search engine consumes not just its own hardware's resources, but also each and
every server's it indexes. This caused a prominent trend in data center architecture design - a shift from powerful
and expensive hardware (like mainframes 25 years ago and HP Superdome about a decade later) towards a
multitude of simple servers. These massively parallel architectures can use either Google-like server farms built
from off-the-shelf hardware or proprietary blocks forming what today is called a supercomputer (IBM Blue Gene).

Trends in operating systems research and development

While computer hardware evolved at the blazing speed, the software counterpart obviously could not remain the
same. Early operating systems creators didn't care much for architecture — nobody at the time had the experience
of writing a program this big. As one of the consequences, those early OS's lacked the modular structure, each
and every subroutine could be called globally, and the entire thing was a huge monolithic “blob”. This made
scaling and expansion extremely difficult. First OS/360 release took 5 years and 5000 people to write and amassed
just over 1 million lines of code. Its successor Mastics, released in 1975, already grew to 20 million lines. It was
obvious that without radical review of design principles further advances were impossible. Thus, modular
paradigm was born, and most of the development in modern software engineering is still based on it or its variants.
Modular design naturally led to modules with similar functionality grouping together and stratification of OS into
hierarchical model. Practically all modern OS's can be subdivided into following levels:

Hardware support
Machine-dependent code

Common kernel mechanisms

Page | 2


http://www.jbstonline.com/

ISSN:0976-0172

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06 -
Journal of Bioscience And Technology

WWW.jbstontine.com

Resource manager
System calls API
Utilities.

Sometimes levels are split or combined, like in nanokernel and microkernel architectures, sometimes even
swapped (exokernel), but the basic structure remains more or less the same. Another huge step in OS design was
made when IBM introduced its Virtual Machine that abstracted the underlying hardware from the lowest level of
OS. This made possible system partitioning and running several instances of OS on the single physical machine.
For a couple of decades, virtualization was exclusively mainframe feature, but it was, of course, bound to
propagate into server and workstation world. Nowadays, all major processor manufacturers include hardware
virtualization support (VT for x86, TrustZone for ARM) [4]. It is estimated that today over 50 percent of all server
workloads are virtualized and this figure is projected to reach 86 percent by 2016 [5]. Virtualization also spread
to workstations where it is widely used as a low-cost software alternative to acquiring dedicated hardware for test
and debugging purposes. Lately, it got even to the mobile and embedded segments of the market, where its benefits
are security, interoperability and, once again saving on hardware — a virtual multimedia processor can be as good
as a dedicated physical one [6]. Virtualization allows computational resource sharing and partitioning, but there
is also need for exactly the opposite — not slicing the existing system into a number of virtual machines, but uniting
the resources of multiple systems into a bigger and more powerful “supersystem”. While virtualization techniques
are nowadays ubiquitous, including hardware manufacturers' support (VT for x86, TrustZone for ARM) and well
known software solutions (VMWare servers and stations, Oracle VBox, Xen), aggregation is a much more
complex problem. Simply speaking, if a virtual node, from software viewpoint, is indistinguishable from a
physical system, the topology of an aggregated system is quite different from a single node. And, of course,
effective use of these aggregated resources requires some sophisticated techniques.

Related works: Plan9 operating system revisited

Nowadays, there is a renewed interest in another OS — Plan9 and its derivatives. Plan9 is an OS developed in the
late 1980s and early 1990s at AT&T Bell Laboratories by the group of researchers and engineers that included
some of the original UNIX creators [8]. In Plan9 design they attempted to straighten out what they thought went
wrong with UNIX and its ancestors. When introduced to the USENIX community in 1992, it was received very
well, with reviews ranging from carefully optimistic to outright ecstatic branding it “a UNIX killer”. Killing UNIX
did not happen — we can only guess for specific reasons, but the general consensus seems to be that while Plan 9
was in many ways superior to UNIX, it just failed to gain critical mass on the improvements [9]. Simply speaking,
UNIX and later Linux as one of UNIX flavors were not as elegant but still good enough. This, combined with its
massive code base, put it in an industry leader position. Plan9, meanwhile, found a niche as hobbyist and research
system. It has, as any great but underachieving project would, a small but dedicated army of followers. Its
impeccable pedigree and elegant design also make it very attractive as a subject in Operating Systems courses in
academia. Plan9 is based on three major principles: x All resources are named and represented by files in a
filesystem x There is a standard protocol, 9P, for accessing files across node boundaries x Separate filesystems
can be joined into a single private name space It was aggressive application of these principles that kept Plan9
consistently compact and robust through the years and a major rework in 2000-2004. Some of Plan9 features
turned out to be so attractive they were adopted by mainstream UNIXs. Most prominent of those is, perhaps, a
filesystem interface to system per-process statistics - /proc filesystem. Linux's /sys filesystem representing system-
wide resources is another nod in that direction. Plan9 also introduced UTF-8, a full and honest n2 set of native
and cross-compilers and linkers for all supported architectures, and some other nifty innovations.

One of the most attractive Plan9 qualities is its compact size. Historically, it was introduced “when things were
small” and even Linux was not the monster we know today. And it managed to stay that through the years. For
example, cat utility resident footprint on Ubuntu 12.04 is 384K while its Plan9 counterpart is just 11K. Similarly,
most standard utilities common for both systems show a factor of 10 to 30 in memory footprint. Cache usage is,
of course, much more conservative in Plan9 as well, which it even more important for performance. This 'tight
and robust' paradigm made Plan9 an attractive candidate for embedded systems design. There it was always,
although marginally, present, particularly in network equipment and storage systems. The distributed processing
model of Plan 9 is very effective and flexible, and it is attractive for embedded systems. The 9P protocol is useful
for inter-system communication. The private name space of Plan 9 also enables flexible and safe distributed
processing in embedded systems. Plan 9 can run on various hardware platforms and is highly suited to building
large distributed systems. A typical Plan 9 installation would comprise one or more file servers, some CPU servers
and a large number of terminals (user workstations). The small size and straightforward structure of (most of) its
source code, and low system management overhead, makes it particularly suitable for distributed embedded

Page | 3


http://www.jbstonline.com/

ISSN:0976-0172

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06 -
Journal of Bioscience And Technology

WWW.jbstontine.com

systems (DES) applications. The server world, though, lusts for Plan 9’s other features — and first of all a relatively
thin 9P protocol and the ease of inter-node communication by manipulating name spaces. This leads to a higher
level of abstraction — applications are agnostic of their execution details. They can run anywhere on any node in
the system, on any architecture. Client can run, within one session, several programs on geographically separated
machines. This improves modularity of any project by representing any information or data as a set of plain files
[10]. 9P protocol was implemented for several foreign systems, including Linux. Actually, for Linux there are is
a 9P server allowing accessing files on a Linux server from Plan9 station and 9P client to access Plan9 files from
Linux computer. This is very handy for cross-platform development. As proof of the renewed interest in Plan9
OS we'll take a look on three projects.

Cloud/IX operating system — a Plan9-based solution to ARM-based server platforms

When selecting the basic operating environment for the development of Cloud/IX OS we used multiple criteria,
including among others the support for distributed operations, scalability, license purity, easy porting of device
drivers and applications, easy deployment and support, standard interfaces, minimal system services overhead.
The main advantage of the 9front system for distributed server application is its ixP protocol, which allows for
managing local and distributed resources by simple mappings onto the namespace. Perhaps the most notable
disadvantage of 9front is the difference between its set of system interfaces and the POSIX, which is a traditional
standard solution for the similar products.

Here we can consider two different approaches to solution of this problem. First, an APE (ANSI / POSIX
Environment) package was developed for 9front - the best approximate of the system interfaces to the POSIX.
Second, our team in association with AltLinux company undertake efforts of porting Linux on the ARM and
microTCA-based server platform (ARM, microTCA). This will permit easy adaptation to the target platform of
many applications developed for the Linux, including traditional cluster applications. It should be noted that many
useful features of 9front design were adapted to Linux. This applies, in particular, to the ixP protocol, the use of
which in Linux is now possible at the level of mounted file systems that allows for exchange of files between
Linux and 9front. Since our Cloud/IX is based on 9front, it inherits all the features of its prototype. The system is
based on three principles: x Resources are named and are available as files in a hierarchical file system x ixP
standard protocol for access to local and remote resources x unbounded hierarchies provided by diverse services
are linked together into an own hierarchical file namespace. ixP protocol implements multiple transactions, each
of which sends a request from the client process to the local or remote server and returns the result. ixP controls
the file system, not just files. Access to the files occurs at the byte level, not blocks, which distinguishes ixP from
protocols such as NFS and RFS [19]. At present, a B-version of the Cloud/IX operating system is developed, and
a work is performed on porting the most popular and commonly used software applications (e.g., nginx — a web-
server and a mail proxy-server running on Unix-like operating systems).

SExperiments with Cloud/IX

We have carried out tests of the software prototype of the ARM-based server platform in order to study the stability
of the ported nginx http-server on heterogeneous Cloud/IX system and its scalability. The tests were performed
in the Data Center at the Systems and Solutions Ltd. on a distributed computer system that comprises 24 x86-
based computers (blade servers), organized into 3 system racks each with 8 blade servers. All blade servers are
equipped with at least one Ethernet 1000Mbps controller.

Experimental

Setup During the experimental testing, we have monitored the load level in cluster nodes with OS services
(separately for each subsystem), which allows to conclude about potential ways of performance improvement. To
display the results of the monitoring, a special purpose software was developed to collect statistics from multiple
nodes in a cluster, to aggregate it on the single node, and to transform monitoring results into format suitable for
the analysis and display in real-time. The software receives data about the node’s and network interface’s
workloads and displays it in a visual form on a web page. The solution is implemented using the following
technology stack: x Server part of application is written in Clojure — a lisp-dialect implementation for the JVM
and libraries: Ring, Composure, Web bit, Clj-json x Client part is implemented in Clojure Script — a dialect of
Clojure that translates into a regular JavaScript, executed in the browser x Implementation of message passing
mechanism from the server to the client is based on WebSocket’s technology x Dynamic rendering of the graphical
elements is realized by working with Canvas element (HTMLS specification). To generate requests to the load
balancer, nix the httpperf utility is used. Httpperf measures the performance of web server and provides a flexible
environment for generating workloads for the HTTP-server and for measuring its performance.

Page | 4


http://www.jbstonline.com/

ISSN:0976-0172

Chevula Rekha etal, IBio sci Tech, Vol 10(4),2022, 01-06 Journal of Bioscience And Technology

WWW.jbstontine.com

At the end of test run, it generates a report, which contains three sections:

general results, a group dedicated to compounds and group. In the load generating mode, it generates requests
with the substitution of the growing numbers, which digits are used as components of the path to the resource.
Scenario of testing the effectiveness of load balancing require the creation of a nginx file hierarchy one each node,
so that their paths with respect to the root directory of nginx match the query, formed by httpperf, and thus the
total amount of data would exceed the size of RAM in each node. Under these conditions, the disk subsystem
becomes the bottleneck at each node, so that it becomes possible to evaluate the effect of workload parallelization.
The same sequence of non-recurring requests is submitted to the balancer and to the separate node, and the results
are compared. Performance of individual components and of the entire cluster is also tested by repeated (identical)
queries. Httpperf allows you to adjust the number of requests per unit of time, which is reflected in the number of
requests processed in parallel. The test is carried out separately for downloading large files and for downloading
small files, allowing you to identify the various potential bottlenecks in the ported nginx. In this test scenario, the
entire contents of the file in the cache of the operating system, and a disk subsystem is no longer a bottleneck. We
wanted the test results to reflect the performance of the server solutions (nginx), as opposed to the entire client-
server complex. For this, it requires either a presence of multiple client computers, generating queries
simultaneously, or the use of a system for running the client, which outperforms significantly a set of all nodes in
the cluster (without disk subsystem that is not used by the client actively). For this study, we have chosen the
second solution.

Conclusion

In this article, we presented the Plan 9 operating system model-based distributed systems design strategy. Using
examples from the realms of the supercomputer, server platforms, and distributed embedded systems, we
demonstrated that the fundamental concepts of the Plan 9 OS are ideally adapted to capture the distributed
processing mechanisms originating from parallel and distributed computational/programming models.
Applications may be written independently of the specifics of the hardware on which they run thanks to the
standardization of the filesystem interface and the simplicity of inter-node communication made possible by the
manipulation of file name spaces. They are completely portable and can function on any system node, regardless
of hardware.

In turn, this leads to an application that takes into account both the model's specified functionality and the
communication requirements of a distributed computing environment. Plan 9's implementation of the 9P protocol
offers a framework for designing scalable distributed system architectures and a hint for allocating workloads
among the available nodes in the system. The ability to represent any kind of data or information as a collection
of simple files greatly enhances the project's modularity. In addition, Plan 9's system servers are user mode
processes, making it a breeze to write new software for. In conclusion, the rising popularity of Plan 9 and its
offshoots is a definite trend. Extensions to Plan 9's real-time and MPP support are the subject of many active
initiatives.

References

[1] S. Orlev. Revolution ARM. Journal of network solutions. LAN Nell, 2012. Available at: http://www.osp.ru/lan/2012/11/13032394/.

[2] Startup Elbrus Technologies’ emulator will allow ARM processors to work with x86-applications. Available at:
http://servernews.ru/596643.

[3] "Plan 9 from the People's Front of cat-v.org (9front)"", NineTimes, June 17, 2011, retrieved September 13, 2012.

[4] T. Laplante, Virtualization has surpassed 50 percent of all server workloads, DataCenterPost.com, March 20, 2014. Available at:
http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads. html.

[5] O. Kharif, Virtualization goes mobile, Bloomberg Businessweek. Technology, April 22, 2008. Available at:
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-
advice.

[6] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, 6th Symposium on Operating Systems Design &
Implementation (OSDI’04), December 6-8, 2004, USENIX 2004, pp.137-149. [PDF].

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks,
European Conference on Computer Systems (EuroSys’07), Lisboa, Portugal, March 21-13, 2007. [PDF].

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom, Plan 9 from Bell Labs, Computing
Systems, vol. 8, no. 3, 1995, pp. 221-225. Available at: http://plan9.bell-labs.com/sys/doc/9.html.

[9] E.S. Raymond, The Art of Unix Programming, Thyrsus Enterprises, 2003.

Page | 5


http://www.jbstonline.com/
http://www.osp.ru/lan/2012/11/13032394/
http://servernews.ru/596643
http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads.html
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://plan9.bell-labs.com/sys/doc/9.html

ISSN:0976-0172

Chevula Rekha etal, IBio sci Tech, Vol 10(4),2022, 01-06 Journal of Bioscience And Technology

WWW.jbstontine.com

[10] D. Presotto, P. Winterbottom, The Organization of Networks in Plan 9. Available at: http://plan9.bell-labs.com/sys/doc/net/net. html.

[11] E. Van Hensbergen, C. Forsyth, J. McKie, and R. Minnich, Petascale Plan 9 on Blue Gene, USENIX 2007 Annual Technical
Conference (USENIX ATC’07), June 17-22, 2007, Poster Session. [Abstract].

[12] R.G. Minnich, J. Floren, and A. Nyrhinen, Measuring kernel throughput on Blue Gene/P with the Plan 9 research operating system,
in: Proceedings of the 6th International Workshop on Plan 9 (IWP9), Athens, GA, USA, October 12, 2009. [PDF].

[13] J. McKie, J. Floren, Edging Towards Exascale with NIX. [PDF]

[14] NIX is a new multicore OS based on Plan9. Available at: http://code.google.com/p/nix-os/.

[15] F.J. Ballesteros, CSP-style Network, File, and System Services in Clive. Lsub Systems Lab, Universidad Rey Juan Carlos, Madrid,
TR Draft, May 23, 2014. [PDF].

[16] S.J. Mullender, P.G. Jansen, Real Time in a Real Operating System, in: Herbert, Andrew James (et al.) (Eds.), Computer Systems.
Theory, Technology, and Applications, Springer, 2004, pp. 213-221. ISBN 978-0-387-21821-2. [PDF].

[17] S.J. Mullender, J. McKie, Real Time in Plan 9, in: Proceedings of the 1st International Workshop on Plan 9 (IWP9), December 4-5,
2006, Madrid, Spain. [PDF].

[18] Y. Sato, K. Maruyama, LP49: Embedded system OS based on L4 and Plan 9, in: Proceedings of the 4th International Workshop on
Plan 9 and Inferno (IWP9), Athens, GA, USA, February 21-23, 2009. [PDF].

[19] H. Trikey, APE - The ANSI/POSIX Environment, Plan 9 Programmer's Manual, Volume 2, AT&T Bell Laboratories, Murray Hill,
NJ, 1991

Page | 6


http://www.jbstonline.com/
http://plan9.bell-labs.com/sys/doc/net/net.html
http://code.google.com/p/nix-os/

