
Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 1

A Study of Cloud/IX Operating System for the ARM-based Data

Center Server Platform

Chevula Rekha1, Vanapamula Veerabrahmachari2 , Arekatla Madhava Reddy3,

Dr. Padigala Suresh4

Assistant Professor1,2,3, Associate Professor4

rekhavenkat16@gmail.com1, vveerabrahmachari@gmail.com2 ,

amreddy2008@gmail.com3,padigalas36@gmail.com4

Department of CSE, A.M. Reddy Memorial College of Engineering and Technology,

Petlurivaripalem, Narasaraopet, Andhra Pradesh

Article Info

 Received: 29-11-2022 Revised: 18-11-2022 Accepted: 28-11-2022

Abstract

A transition from costly hardware to a large number of inexpensive servers has become a dominant trend in data center design architecture,

creating new challenges for data center architects and necessitating the adoption of fresh approaches. In this paper, we explore alternative

approaches to designing distributed systems in the spirit of the Plan9 operating system. We begin with an overview of application and

research initiatives such as the porting of Plan9 to the IBM Blue Gene/L supercomputer, the usage of Plan9 in data centers and clouds,

and the development of distributed embedded systems. Then, we present Cloud/IX, an OS for ARM-based server systems that, like Plan9,

is based on the Plan9 architecture and runs on top of a variant of Plan 9 called 9front. We also detail the infrastructure and findings of

an experimental evaluation of Cloud/IX on a real-world, multi-server farm in a data center.

Keywords:

operating systems; distributed systems; Plan 9 operating system model; server platforms; data centers; Cloud/IX

operating system.

Introduction

Modern data centers look very different than they did just 10 years ago and it's not just that 10 years is perhaps

longer than any computer lifespan. The emergence of Big Data, Cloud Computing, 4G Mobile data, and other

modern trends drastically changed the spectrum of industry's tasks and problems. Recent advances in science such

as genetic sequencing and nuclear research made sure we can safely assume that data production and massively

parallel processing (MPP) continues its exponential growth. Integration with private and public clouds, server

consolidation and full virtualization, more extensive skill set of data center personnel are all consequences of this

explosive growth. This poses new tasks and demands the use of different strategies for data center (DC) architects.

An increase in power consumption in DCs constitutes the major problem to the DC market development.

Energyrelated costs account for about half of the total server maintenance costs of data center ownership, while

most of these goes to the provision of power supply and cooling to the servers. In general, we can consider two

approaches to solution of the energy efficiency problem, namely: an efficient use of existing facilities and

resources (e.g., use of virtualization and cloud computing, allowing to increase utilization rate of available

resources and to decrease the equipment needs), and new architectural solutions to the data center designs (e.g.,

Cisco Unified Computing System).

 The energy efficiency problem of the server design is approached at different levels from a processor core,

through the single server, and up to the server

farm. At processor level, the ARM energy-efficient processor architecture [1] is nowadays considered a solution

of choice to the development of server hardware. According to IDC forecasts, by 2015 the ARM architecture can

http://www.jbstonline.com/
mailto:rekhavenkat16@gmail.com
mailto:vveerabrahmachari@gmail.com2
mailto:amreddy2008@gmail.com
mailto:padigalas36@gmail.com

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 2

win more than 15% market share of server hardware. In September 2010, the British company ARM Holdings

first entered this market with Cortex-A15 processor based on ARMv7-architecture.Their version of the ARM

Cortex A15 MPCore, designed for CPU clocks of up to 2.5 GHz, demonstrated the five times performance

improvement with respect to the processors used in smart phones while maintaining the same energy consumption

levels. Recently, ARM has released the first 64-bit processors - CortexA57 and A53, and a new 64-bit architecture

- ARMv8, which is nearly ready for mass production. To leverage the advantages that new energy-efficient

processor architecture offers, the server architects request new software solutions both at the operating systems

level and at level of the server virtualization layers. An example of developments in this area is the x86 binary

code compiler for the ARM architecture designed by the Elbrus Technology [2]. It allows for migration of

software written for x86-based servers to the ARM processor architecture. Software emulator will allow

unchanged run of applications compiled for the x86-architecture on the ARM server. Recently, ARM have

published package additions to the Linux kernel, which provide support to the instruction set of the ARMv8-core.

These additions are now implemented in a number of flavors of Linux, including Ubuntu. Thus, the design and

development of an operating system for servers based on ARM processor architecture continues to be a task of

great importance, a quality solution to which is expected to allow creation the efficient distributed server farms in

terms of performance, power consumption, and scalability. In this paper, we describe our solution to the

distributed systems design problems that we approach with the development of a new operating system called

Cloud/IX. The design of our own operating system follows the Plan9 model and is implemented on top of one of

Plan 9 derivatives called 9front - a free software distributed operating system [3]. We present the general

characteristics of Plan 9-based approach to the design of distributed systems, and introduce the Cloud/IX operating

system for data center servers based on ARM processors. Section 2 provides quick discussion of distributed

systems application spectrum in its relation to the computer architecture problems. Section 3 presents key features

of the Plan 9, accompanied with the examples of Plan 9 use in diverse distributed computing application areas.

These include project of porting Plan 9 to the supercomputer platform (for MPP scientific computing

applications), project of using Plan 9 in data center server platform (for distributed and cloud systems

applications), and a research project of adding real-time scheduling into Plan 9 for distributed embedded systems

(DES) applications. Section 4 describes our Cloud/IX operating system for the ARM-based server platforms. The

experimental testbed and results of experimental tests of the Cloud/IX are discussed in Section 5. Finally, some

conclusions and future work are shown in Section 6.

Distributed Applications and its Impact on Computer Architecture Design

There is a huge class of tasks that can be well parallelized, which makes it much easier to run them on multi-node

computer architectures – this includes mostly computational tasks, such as fluid dynamics and optical modeling

as well as generic data processing, i.e. genetic sequencing and text processing, including web search and indexing.

Web search and indexing is, in fact, one of the most, if not the most widespread use of computing resources today.

Some estimates put the percentage of worldwide CPU cycles spent on it as high as 35%, which sounds believable

when you count for a fact that a search engine consumes not just its own hardware's resources, but also each and

every server's it indexes. This caused a prominent trend in data center architecture design - a shift from powerful

and expensive hardware (like mainframes 25 years ago and HP Superdome about a decade later) towards a

multitude of simple servers. These massively parallel architectures can use either Google-like server farms built

from off-the-shelf hardware or proprietary blocks forming what today is called a supercomputer (IBM Blue Gene).

Trends in operating systems research and development

While computer hardware evolved at the blazing speed, the software counterpart obviously could not remain the

same. Early operating systems creators didn't care much for architecture – nobody at the time had the experience

of writing a program this big. As one of the consequences, those early OS's lacked the modular structure, each

and every subroutine could be called globally, and the entire thing was a huge monolithic “blob”. This made

scaling and expansion extremely difficult. First OS/360 release took 5 years and 5000 people to write and amassed

just over 1 million lines of code. Its successor Mastics, released in 1975, already grew to 20 million lines. It was

obvious that without radical review of design principles further advances were impossible. Thus, modular

paradigm was born, and most of the development in modern software engineering is still based on it or its variants.

Modular design naturally led to modules with similar functionality grouping together and stratification of OS into

hierarchical model. Practically all modern OS's can be subdivided into following levels:

 Hardware support

 Machine-dependent code

 Common kernel mechanisms

http://www.jbstonline.com/

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 3

 Resource manager

System calls API

 Utilities.

 Sometimes levels are split or combined, like in nanokernel and microkernel architectures, sometimes even

swapped (exokernel), but the basic structure remains more or less the same. Another huge step in OS design was

made when IBM introduced its Virtual Machine that abstracted the underlying hardware from the lowest level of

OS. This made possible system partitioning and running several instances of OS on the single physical machine.

For a couple of decades, virtualization was exclusively mainframe feature, but it was, of course, bound to

propagate into server and workstation world. Nowadays, all major processor manufacturers include hardware

virtualization support (VT for x86, TrustZone for ARM) [4]. It is estimated that today over 50 percent of all server

workloads are virtualized and this figure is projected to reach 86 percent by 2016 [5]. Virtualization also spread

to workstations where it is widely used as a low-cost software alternative to acquiring dedicated hardware for test

and debugging purposes. Lately, it got even to the mobile and embedded segments of the market, where its benefits

are security, interoperability and, once again saving on hardware – a virtual multimedia processor can be as good

as a dedicated physical one [6]. Virtualization allows computational resource sharing and partitioning, but there

is also need for exactly the opposite – not slicing the existing system into a number of virtual machines, but uniting

the resources of multiple systems into a bigger and more powerful “supersystem”. While virtualization techniques

are nowadays ubiquitous, including hardware manufacturers' support (VT for x86, TrustZone for ARM) and well

known software solutions (VMWare servers and stations, Oracle VBox, Xen), aggregation is a much more

complex problem. Simply speaking, if a virtual node, from software viewpoint, is indistinguishable from a

physical system, the topology of an aggregated system is quite different from a single node. And, of course,

effective use of these aggregated resources requires some sophisticated techniques.

 Related works: Plan9 operating system revisited

Nowadays, there is a renewed interest in another OS – Plan9 and its derivatives. Plan9 is an OS developed in the

late 1980s and early 1990s at AT&T Bell Laboratories by the group of researchers and engineers that included

some of the original UNIX creators [8]. In Plan9 design they attempted to straighten out what they thought went

wrong with UNIX and its ancestors. When introduced to the USENIX community in 1992, it was received very

well, with reviews ranging from carefully optimistic to outright ecstatic branding it “a UNIX killer”. Killing UNIX

did not happen – we can only guess for specific reasons, but the general consensus seems to be that while Plan 9

was in many ways superior to UNIX, it just failed to gain critical mass on the improvements [9]. Simply speaking,

UNIX and later Linux as one of UNIX flavors were not as elegant but still good enough. This, combined with its

massive code base, put it in an industry leader position. Plan9, meanwhile, found a niche as hobbyist and research

system. It has, as any great but underachieving project would, a small but dedicated army of followers. Its

impeccable pedigree and elegant design also make it very attractive as a subject in Operating Systems courses in

academia. Plan9 is based on three major principles: x All resources are named and represented by files in a

filesystem x There is a standard protocol, 9P, for accessing files across node boundaries x Separate filesystems

can be joined into a single private name space It was aggressive application of these principles that kept Plan9

consistently compact and robust through the years and a major rework in 2000-2004. Some of Plan9 features

turned out to be so attractive they were adopted by mainstream UNIXs. Most prominent of those is, perhaps, a

filesystem interface to system per-process statistics - /proc filesystem. Linux's /sys filesystem representing system-

wide resources is another nod in that direction. Plan9 also introduced UTF-8, a full and honest n2 set of native

and cross-compilers and linkers for all supported architectures, and some other nifty innovations.

One of the most attractive Plan9 qualities is its compact size. Historically, it was introduced “when things were

small” and even Linux was not the monster we know today. And it managed to stay that through the years. For

example, cat utility resident footprint on Ubuntu 12.04 is 384K while its Plan9 counterpart is just 11K. Similarly,

most standard utilities common for both systems show a factor of 10 to 30 in memory footprint. Cache usage is,

of course, much more conservative in Plan9 as well, which it even more important for performance. This 'tight

and robust' paradigm made Plan9 an attractive candidate for embedded systems design. There it was always,

although marginally, present, particularly in network equipment and storage systems. The distributed processing

model of Plan 9 is very effective and flexible, and it is attractive for embedded systems. The 9P protocol is useful

for inter-system communication. The private name space of Plan 9 also enables flexible and safe distributed

processing in embedded systems. Plan 9 can run on various hardware platforms and is highly suited to building

large distributed systems. A typical Plan 9 installation would comprise one or more file servers, some CPU servers

and a large number of terminals (user workstations). The small size and straightforward structure of (most of) its

source code, and low system management overhead, makes it particularly suitable for distributed embedded

http://www.jbstonline.com/

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 4

systems (DES) applications. The server world, though, lusts for Plan 9’s other features – and first of all a relatively

thin 9P protocol and the ease of inter-node communication by manipulating name spaces. This leads to a higher

level of abstraction – applications are agnostic of their execution details. They can run anywhere on any node in

the system, on any architecture. Client can run, within one session, several programs on geographically separated

machines. This improves modularity of any project by representing any information or data as a set of plain files

[10]. 9P protocol was implemented for several foreign systems, including Linux. Actually, for Linux there are is

a 9P server allowing accessing files on a Linux server from Plan9 station and 9P client to access Plan9 files from

Linux computer. This is very handy for cross-platform development. As proof of the renewed interest in Plan9

OS we'll take a look on three projects.

Cloud/IX operating system – a Plan9-based solution to ARM-based server platforms

When selecting the basic operating environment for the development of Cloud/IX OS we used multiple criteria,

including among others the support for distributed operations, scalability, license purity, easy porting of device

drivers and applications, easy deployment and support, standard interfaces, minimal system services overhead.

The main advantage of the 9front system for distributed server application is its ixP protocol, which allows for

managing local and distributed resources by simple mappings onto the namespace. Perhaps the most notable

disadvantage of 9front is the difference between its set of system interfaces and the POSIX, which is a traditional

standard solution for the similar products.

Here we can consider two different approaches to solution of this problem. First, an APE (ANSI / POSIX

Environment) package was developed for 9front - the best approximate of the system interfaces to the POSIX.

Second, our team in association with AltLinux company undertake efforts of porting Linux on the ARM and

microTCA-based server platform (ARM, microTCA). This will permit easy adaptation to the target platform of

many applications developed for the Linux, including traditional cluster applications. It should be noted that many

useful features of 9front design were adapted to Linux. This applies, in particular, to the ixP protocol, the use of

which in Linux is now possible at the level of mounted file systems that allows for exchange of files between

Linux and 9front. Since our Cloud/IX is based on 9front, it inherits all the features of its prototype. The system is

based on three principles: x Resources are named and are available as files in a hierarchical file system x ixP

standard protocol for access to local and remote resources x unbounded hierarchies provided by diverse services

are linked together into an own hierarchical file namespace. ixP protocol implements multiple transactions, each

of which sends a request from the client process to the local or remote server and returns the result. ixP controls

the file system, not just files. Access to the files occurs at the byte level, not blocks, which distinguishes ixP from

protocols such as NFS and RFS [19]. At present, a β-version of the Cloud/IX operating system is developed, and

a work is performed on porting the most popular and commonly used software applications (e.g., nginx – a web-

server and a mail proxy-server running on Unix-like operating systems).

 5Experiments with Cloud/IX

We have carried out tests of the software prototype of the ARM-based server platform in order to study the stability

of the ported nginx http-server on heterogeneous Cloud/IX system and its scalability. The tests were performed

in the Data Center at the Systems and Solutions Ltd. on a distributed computer system that comprises 24 x86-

based computers (blade servers), organized into 3 system racks each with 8 blade servers. All blade servers are

equipped with at least one Ethernet 1000Mbps controller.

Experimental

Setup During the experimental testing, we have monitored the load level in cluster nodes with OS services

(separately for each subsystem), which allows to conclude about potential ways of performance improvement. To

display the results of the monitoring, a special purpose software was developed to collect statistics from multiple

nodes in a cluster, to aggregate it on the single node, and to transform monitoring results into format suitable for

the analysis and display in real-time. The software receives data about the node’s and network interface’s

workloads and displays it in a visual form on a web page. The solution is implemented using the following

technology stack: x Server part of application is written in Clojure – a lisp-dialect implementation for the JVM

and libraries: Ring, Composure, Web bit, Clj-json x Client part is implemented in Clojure Script – a dialect of

Clojure that translates into a regular JavaScript, executed in the browser x Implementation of message passing

mechanism from the server to the client is based on WebSocket’s technology x Dynamic rendering of the graphical

elements is realized by working with Canvas element (HTML5 specification). To generate requests to the load

balancer, nix the httpperf utility is used. Httpperf measures the performance of web server and provides a flexible

environment for generating workloads for the HTTP-server and for measuring its performance.

http://www.jbstonline.com/

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 5

At the end of test run, it generates a report, which contains three sections:

 general results, a group dedicated to compounds and group. In the load generating mode, it generates requests

with the substitution of the growing numbers, which digits are used as components of the path to the resource.

Scenario of testing the effectiveness of load balancing require the creation of a nginx file hierarchy one each node,

so that their paths with respect to the root directory of nginx match the query, formed by httpperf, and thus the

total amount of data would exceed the size of RAM in each node. Under these conditions, the disk subsystem

becomes the bottleneck at each node, so that it becomes possible to evaluate the effect of workload parallelization.

The same sequence of non-recurring requests is submitted to the balancer and to the separate node, and the results

are compared. Performance of individual components and of the entire cluster is also tested by repeated (identical)

queries. Httpperf allows you to adjust the number of requests per unit of time, which is reflected in the number of

requests processed in parallel. The test is carried out separately for downloading large files and for downloading

small files, allowing you to identify the various potential bottlenecks in the ported nginx. In this test scenario, the

entire contents of the file in the cache of the operating system, and a disk subsystem is no longer a bottleneck. We

wanted the test results to reflect the performance of the server solutions (nginx), as opposed to the entire client-

server complex. For this, it requires either a presence of multiple client computers, generating queries

simultaneously, or the use of a system for running the client, which outperforms significantly a set of all nodes in

the cluster (without disk subsystem that is not used by the client actively). For this study, we have chosen the

second solution.

Conclusion

 In this article, we presented the Plan 9 operating system model-based distributed systems design strategy. Using

examples from the realms of the supercomputer, server platforms, and distributed embedded systems, we

demonstrated that the fundamental concepts of the Plan 9 OS are ideally adapted to capture the distributed

processing mechanisms originating from parallel and distributed computational/programming models.

Applications may be written independently of the specifics of the hardware on which they run thanks to the

standardization of the filesystem interface and the simplicity of inter-node communication made possible by the

manipulation of file name spaces. They are completely portable and can function on any system node, regardless

of hardware.

In turn, this leads to an application that takes into account both the model's specified functionality and the

communication requirements of a distributed computing environment. Plan 9's implementation of the 9P protocol

offers a framework for designing scalable distributed system architectures and a hint for allocating workloads

among the available nodes in the system. The ability to represent any kind of data or information as a collection

of simple files greatly enhances the project's modularity. In addition, Plan 9's system servers are user mode

processes, making it a breeze to write new software for. In conclusion, the rising popularity of Plan 9 and its

offshoots is a definite trend. Extensions to Plan 9's real-time and MPP support are the subject of many active

initiatives.

References

 [1] S. Orlev. Revolution ARM. Journal of network solutions. LAN №11, 2012. Available at: http://www.osp.ru/lan/2012/11/13032394/.

[2] Startup Elbrus Technologies’ emulator will allow ARM processors to work with x86-applications. Available at:

http://servernews.ru/596643.

 [3] "Plan 9 from the People's Front of cat-v.org (9front)", NineTimes, June 17, 2011, retrieved September 13, 2012.

[4] T. Laplante, Virtualization has surpassed 50 percent of all server workloads, DataCenterPost.com, March 20, 2014. Available at:

http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads.html.

 [5] O. Kharif, Virtualization goes mobile, Bloomberg Businessweek. Technology, April 22, 2008. Available at:

http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-

advice.

 [6] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, 6th Symposium on Operating Systems Design &

Implementation (OSDI’04), December 6-8, 2004, USENIX 2004, pp.137-149. [PDF].

 [7] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks,

European Conference on Computer Systems (EuroSys’07), Lisboa, Portugal, March 21-13, 2007. [PDF].

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom, Plan 9 from Bell Labs, Computing

Systems, vol. 8, no. 3, 1995, pp. 221–225. Available at: http://plan9.bell-labs.com/sys/doc/9.html.

[9] E.S. Raymond, The Art of Unix Programming, Thyrsus Enterprises, 2003.

http://www.jbstonline.com/
http://www.osp.ru/lan/2012/11/13032394/
http://servernews.ru/596643
http://datacenterpost.com/2014/03/virtualization-surpassed-50-percent-server-workloads.html
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://www.businessweek.com/stories/2008-04-22/virtualization-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice
http://plan9.bell-labs.com/sys/doc/9.html

Chevula Rekha etal, JBio sci Tech, Vol 10(4),2022, 01-06

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 6

[10] D. Presotto, P. Winterbottom, The Organization of Networks in Plan 9. Available at: http://plan9.bell-labs.com/sys/doc/net/net.html.

 [11] E. Van Hensbergen, C. Forsyth, J. McKie, and R. Minnich, Petascale Plan 9 on Blue Gene, USENIX 2007 Annual Technical

Conference (USENIX ATC’07), June 17-22, 2007, Poster Session. [Abstract].

[12] R.G. Minnich, J. Floren, and A. Nyrhinen, Measuring kernel throughput on Blue Gene/P with the Plan 9 research operating system,

in: Proceedings of the 6th International Workshop on Plan 9 (IWP9), Athens, GA, USA, October 12, 2009. [PDF].

[13] J. McKie, J. Floren, Edging Towards Exascale with NIX. [PDF]

 [14] NIX is a new multicore OS based on Plan9. Available at: http://code.google.com/p/nix-os/.

 [15] F.J. Ballesteros, CSP-style Network, File, and System Services in Clive. Lsub Systems Lab, Universidad Rey Juan Carlos, Madrid,

TR Draft, May 23, 2014. [PDF].

 [16] S.J. Mullender, P.G. Jansen, Real Time in a Real Operating System, in: Herbert, Andrew James (et al.) (Eds.), Computer Systems.

Theory, Technology, and Applications, Springer, 2004, pp. 213-221. ISBN 978-0-387-21821-2. [PDF].

 [17] S.J. Mullender, J. McKie, Real Time in Plan 9, in: Proceedings of the 1st International Workshop on Plan 9 (IWP9), December 4-5,

2006, Madrid, Spain. [PDF].

 [18] Y. Sato, K. Maruyama, LP49: Embedded system OS based on L4 and Plan 9, in: Proceedings of the 4th International Workshop on

Plan 9 and Inferno (IWP9), Athens, GA, USA, February 21-23, 2009. [PDF].

[19] H. Trikey, АРЕ - The ANSI/POSIX Environment, Plan 9 Programmer's Manual, Volume 2, АТ&Т Bell Laboratories, Murray Hill,

NJ, 1991

http://www.jbstonline.com/
http://plan9.bell-labs.com/sys/doc/net/net.html
http://code.google.com/p/nix-os/

